![]() |
|
![]() |
#1 |
Member
Join Date: Dec 2004
Location: Ann Arbor, MI
Posts: 5,503
|
![]()
[QUOTE=S.Al-Anizi]Ariel- My view of japanese blades, is that they're esily bent, all they're good for, is keeping an edge...QUOTE]
That was the genius of Japanese swordmakers! Their blades could withstand the blow but could also keep the edge. The construction of Japanese blades was not a mere accident, but a consistently applied and very clever way to combine the seemingly incompatible qualities: resilience of the body and keenness of the edge. Wootz blades were beautiful, especially the ladder/rose patterns, but were mechanically "singleminded" and I wonder whether these embellishments requiring chiselling the blade perpendicular to the axis actually weakened the blade even further. BTW, Caucasian swordmakers used "Japanese" differential tempering on their best blades and got beautiful hamons as a result ( of course, boys, you will learn about it first hand when Astvatsaturyan's book is finally translated ![]() Well, enough of royalty bashing... Swords are mechanical implements first and foremost; they have to stand to brutal conditions of the battlefield. Those that cannot do it are just pretty toys. Last edited by Andrew; 18th October 2006 at 01:44 PM. |
![]() |
![]() |
![]() |
#2 | |
Member
Join Date: Jun 2006
Location: Arabia
Posts: 278
|
![]()
[QUOTE=ariel]
Quote:
As to Abby, that reminds me of a legend I read in Arab arms and armour, where this old warrior Abu Zaid, placed 2 camels ontop of each other, and cut them into four halves! ![]() Gt- Could wootz blades be hardened then tempered like other conventional steels? or would high temperatures burn out the blade? Last edited by Andrew; 18th October 2006 at 03:05 PM. |
|
![]() |
![]() |
![]() |
#3 |
Member
Join Date: Mar 2005
Posts: 116
|
![]()
Hi
yes.. wootz is a funny creature.... if you leave it to air harden.. then you have a potential for pearlite ... and you'd let the carbides do the cutting.. (pending on the type of carbides......as there are many kinds with various hardnesses..... eg fe carbide, V, Cr, Tungsten ??? ) or you can oil quench it.... and get martensite .....which will be much like our modern blades...... and you can temper this down for a more springy tough steel ..... or leave it hard, chippy, and not very tough at all..... or somewheres inbetween which is where you'd have some edge retention and toughness... aswell ... you don't need to clay coat the back to get differential hardening... here is a little bowie i did.... that had no clay .... and a canolla oil full quench... -- as you can see..... only the edge was hardened... as the steel i used was W1 (a shallow hardening steel much like the old carbon steels ) http://i43.photobucket.com/albums/e3...kel/total1.jpg http://i43.photobucket.com/albums/e3...ownoverall.jpg http://i43.photobucket.com/albums/e3...kel/tipup1.jpg fun stuff Greg -- |
![]() |
![]() |
![]() |
#4 |
Member
Join Date: Feb 2005
Posts: 133
|
![]()
I'm back... If my grant goes through it should answer some of these questions. Here is an excerpt from my PhD, but we know a bit more now than then.. Particularly note Ebner and Maurer (1982) study, I think ductility might be the key, particulary when on horseback.
'' The quality of different swords was first noted by al-Kindi. He used the terms, translated as “antique” for good, “modern” for not good, and “not antique but not modern” for medium quality. Al-Kindi said that the terms did not reflect age but quality. There is no consensus of opinion on the quality of crucible steel or Damascus steel either in antiquity or by modern researchers, “Some say the blades were flexible and tough; others conceded that they were stiff and even brittle but extraordinarily sharp...”(Bronson, 1986, 13). The appearance and behaviour of a metal is the result of the microstructure. Before modern times, when elaborate scientific equipment became available, the quality of a blade was judged on external factors rather than microstructure. However, steels made by different methods, with different microstructures, could have similar behaviour properties or hidden defects. Anosov wrote that Damascus swords were assessed by four “tests”: 1) “Ring: – the clearer the tone, the better is the quality of steel, 2) Sharpness of the cutting edge: - while testing the edge, damask steel must cut a fine silk handkerchief in one stroke, 3) Strength of the blade: - on cutting an iron bar, damask steel should not acquire notches, 4) Elasticity: - on bending, damask steel should not break and should not become permanently deformed” (Bogachev, 1952, 40). Al-Beruni also refers to these same characteristics. He refers to qala` swords which have clangour, whereas non-qala’ swords “possess an irritating sound” (Said, 1986, 213). Whichever type of swords these were, the passage does suggest that sound was an important feature considered when assessing the quality of the sword. More recently Massalski stated that a sabre should possess a good sound (Allan and Gilmour, 2000, 539). Indeed, the composition of the sword would affect its sound. According to Rostoker and Bronson (1990, 151) iron and steel are used to made musical wire because they have better properties than other metals, such as capacity for tension and good resistance to fatigue fracture. No specific studies have addressed the sounds different types of blades make. Factors that would affect the sound include the shape of the blade and any faults. For example, an internal crack or atomic-scale changes will have a dampening effect (Gordon, pers. com.). Thus, a clear long ring would suggest a quality blade. The relationship between the sharpness of the blades and the pattern was noted by a number of scholars. Sharpness is primarily due to the presence of cementite in steel, which is hard yet brittle, thus it will cut well but will shatter if struck. Contrarily, iron areas composed of soft ferrite will not hold a sharp edge. Already, al-Beruni stated that the sharpness of farand (the pattern) comes from its hardness, but that it is brittle (Said, 1989, 217). Too many “threads” (i.e. aligned cementite in hypereutectoid blades) would produce a sharp yet brittle edge. Above it was discussed that prominent threads would be formed in slowly cooled ingots, which were extensively forged at low temperatures producing the coarser and clearer pattern. The ductility of Damascus blades was one feature that distinguished it from other types of steels. Damascus steel blades typically contain spheroidal/globular cementite in a ferrite/pearlite matrix. Metallurgical experiments conducted by Ebner and Maurer (1982) on steel concluded that toughness and ductility coincide with a spheroidization of carbides. They also noted that additional tempering decreases the strength whereas toughness and ductility vary only slightly (Ebner and Maurer, 1982). Thus, the microstructure of hypereutectoid Damascus steel is optimum for ductility. Given the variety of crucible steel, some with a high cementite content and others with a high ferrite content, in addition to the variety of forging methods, the range of microstructures, and the presence of phosphorous and other minor or trace elements, it is not surprising that there is no consensus of opinion. The presence of small amounts of phosphorus would have affected the forging and performance of the blade, particularly the elasticity. The effects of less than 1% P in the steel would have greatly influenced the performance of the blade. It appears that there were different types of crucible steel available, such as those that were made of hypoeutectic or hypereutectic steel, with or without a pattern and that each possessed different qualities because of their microstructure, the presence of minor and trace elements, and their subsequent heat treatments. Not only would phosphorus have made the ingot “hot short” (see above), it would have made the finished product “cold short” (brittle when cold) and this property was noticed in the past. In fourteenth century Moorish Spain, Aly ben ’Abderrahman Ibn Hodeil observed that “… the Hindy sabre often breaks when the weather is cold and shows itself better when the weather is warm” (Bronson, 1986 from Mercier, 1924, 231). This is probably due to the presence of phosphorus in the steel. Hindi sabres derived from Sri Lanka (see above), and indeed Wayman and Juleff (1999, 36) identified steadite, the iron-phosphorous compound, in a crucible ingot from there, suggesting that blades produced in Sri Lanka contained phosphorus. Blades that contain phosphorus in percentages over c. 0.3% can be “cold short” and those that work well and be malleable in the summer can shatter during a cold spell (Rostoker and Bronson, 1990, 22; Percy, 1864, 64). In addition to being decorative, the Damascus pattern was a hallmark of a potentially very high quality blade. Crucible steel blades that did not have a pattern could have been just as good quality as those with a pattern, yet, those with a pattern may not have been as good as some without. However, it may not have been possible to distinguish crucible steel blades without a pattern to blades made from non-crucible steel. While blades made of other types of steel could have been equally as sharp and strong, they would not have remained as ductile because they did not have the microstructure of spheroidal cementite in a ferrite/pearlite matrix. Ductility would have been a highly important feature, particularly in combat, because a bent or shattered blade could cost the user his life. A man would purchase the best quality blade available, for himself or possibly his son who had come of age, because not only was the blade a symbol of masculinity and prestige, but it would be his defence in a confrontation, hence his reputation, status, and life depended on the chosen blade. By using the above-mentioned tests and by observing the type of pattern, a blade would be chosen. The name of a particular type of decorative pattern was often associated with a specific location, workshop or smith, who would have had a reputation for making blades of a specific quality." I think that just gives more fuel to the argument rather than an answer. ![]() |
![]() |
![]() |
![]() |
#5 |
Member
Join Date: Nov 2004
Location: USA
Posts: 1,725
|
![]()
lol, Ann.
![]() ![]() Just kidding, of course. Many thanks to you, Jeff, Chris and Greg for the professional input! |
![]() |
![]() |
![]() |
#6 |
Member
Join Date: Jun 2006
Location: Arabia
Posts: 278
|
![]()
Many, Many thanks Ann
![]() ![]() |
![]() |
![]() |
![]() |
#7 | |
Member
Join Date: May 2006
Location: Magenta, Northern Italy
Posts: 123
|
![]() Quote:
I would like to confirm this quote. Japaneses found the same problems in Manchuria and Siberia. Lesser blades (many officers used family ones, but not the best anyway, and most were made with too much impurities i.e. phosphorus that's likely the most dangerous of all) went broken so easy to made a concern to Japanese Imperial Army. The problem was resolved by Seijuro Masahide Aoyama and Mitsutaro Honda from Tohoku University,helped by Toyo-Hamono Co.,Ltd of Sendai They made a blade in Marugitae, water-quenched. Such blades were called Kikento.The steel was called Tahado-tetsu (nickel-crhome-manganese) from Toyo Hamono Co., Ltd. This is only in the '30s, so I wonder if before it wasn't such an issue the cold or simply there was not the technology to build -40° C resistant blades. Sources : Ohmura. Last edited by tsubame1; 18th October 2006 at 07:12 PM. |
|
![]() |
![]() |
![]() |
#8 |
Member
Join Date: Dec 2004
Location: Ann Arbor, MI
Posts: 5,503
|
![]()
[QUOTE=
As to Abby, that reminds me of a legend I read in Arab arms and armour, where this old warrior Abu Zaid, placed 2 camels ontop of each other, and cut them into four halves! ![]() [/QUOTE] Yes, I remember this story at Elgood's. Apparently, having wasted 2 camels, Abu Zaid gave the owner of the sword the remaining 6 beasts (officially belonging to his unkle...) in exchange and went home happily. Elgood's comment was very dry:" The reaction of Abu Zaid's unkle was not recorded". ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
#9 | ||
Member
Join Date: May 2006
Location: Magenta, Northern Italy
Posts: 123
|
![]() Quote:
Quote:
for almost 1000 years being such blades so prone to bending... Last edited by tsubame1; 18th October 2006 at 07:31 PM. |
||
![]() |
![]() |
![]() |
#10 | |
Member
Join Date: Jun 2006
Location: Arabia
Posts: 278
|
![]() Quote:
|
|
![]() |
![]() |
![]() |
#11 |
Member
Join Date: Jan 2006
Location: Kent
Posts: 2,658
|
![]()
An excellent informative thread.........keep up the good work
![]() As has been already mentioned, it is the 'artist's' forging technique and heat treatment that ultimately determines the quality and characteristics of a blade......obviously the quality of the raw material is extremely important. But the best quality steel or wootz badly forged/heat treated would be still be a poor blade. |
![]() |
![]() |
![]() |
#12 |
Member
Join Date: Dec 2004
Location: Ann Arbor, MI
Posts: 5,503
|
![]()
Originally posted by tsubame 1
Samurai too. I wonder why the heck they used the same type of technology for almost 1000 years being such blades so prone to bending... Don't get it. Are you being facetious? |
![]() |
![]() |
![]() |
#13 | |
(deceased)
Join Date: Dec 2004
Location: East Coast USA
Posts: 3,191
|
![]() Quote:
In battle a bent blade is better than a broken one and if you survived and the blade only had a slight bend it could be straightened back out by the smith. Said blade was than retired but was held in great reverence. Lew |
|
![]() |
![]() |
![]() |
#14 |
Member
Join Date: Mar 2005
Location: Australia
Posts: 685
|
![]()
Hi,
Ann, many thanks for that very informative essay on wootz swords and Gt Obach your observations on the subject are most instructive. Ariel: I also wondered about those chisel cuts. If any rubbish got into them, or the weld was incomplete, then am sure that they would have not helped. Re swords breaking in cold weather: Steels exhibit, what is known in the trade as the "brittle transition temperature"; This is a temperature range below which it ceases being ductile. Apart from impurities such as Phosphorus, a number of other factors also determine this temperature. To make things more complicated, whether a sword, or implement, breaks or not is again determined by a number of other factors that are dealt with in the discipline of "fracture mechanics" - In short, the presence of micro cracks, however acquired, and their ability to propagate through the steel are of paramount significance. Brittle fracture is primarily determined by the interaction of the said cracks, ductility/brittleness of the steel and the geometry of the implement as well as other mitigating factors such as the presence of crack arrestors (say, slag in wrought iron). Structures of quite ductile steel can and do fail in a brittle manner if the right factors are present. So it is not just about embrittlement, though it is certainly one very important factor. This probably explains why some Japanese swordsmen are said to be able to break the swords of their opponents with a cut, a feat often mistakenly attributed to the superiority of their swords. Another observation in this respect is that based on anecdotal reports, a good many of those Japanese swords that broke during winter, in fact failed under extremely cold told temperatures, conditions under which other steel implements also failed. Reading through this threads confirms, at least to me, that there is much more to swords than what mere metallurgical considerations would suggest; It also reinforces my long held belief that they were rather poor weapons of war, except in very select applications, such as cavalry cutting down fleeing infantry. This on account of their vulnerability to the inevitable abuses encountered on the battlefield, not to mention tactical disadvantages, when compared to other weapons. I also would like to make the following observations: a) The amount of blade to blade clashing that a sword is expected to undergo is indicated by the comprehensiveness of its handguard. Eastern swords, with the exception of the Indian gauntlet sword, offer minimalist hand protection and thus it is a safe bet that they were not used much for parrying, if at all (except as acts of desperation) - Japanese swords, for one, are incredibly fragile if clashed against another similar blade, and most swords are very quickly reduced to saw/junk status if abused in such a manner, even rapiers. I still obstinately hold to the view that parrying with a sword blade is a post small-sword development and whilst it can be done to some extent with heavier swords, in practice it was infrequently resorted to. b) Cutting through iron rods with a sword may not be such a big deal as when fully annealed, the rod can be made incredibly soft. c) Any edged sword can be bent or terminally damaged by a badly executed cut - Not just Japanese. Cutting requires considerable proficiency. d) Japanese blades are quite thick at the shoulder, with little taper along their length and have a greater sweet spot around their COP, thus minimizing the tendency to bend under a badly executed cut. In fact this thickness has often been cited as a deficiency of Japanese blades, as it inhibits penetration - The Japanese highly polished their blades to mitigate this drawback and to enable them to slide through the medium being cut into. Also, it is reported that when European sabres were introduced into the Japanese cavalry, those officers skilled in traditional swordsmanship fund them much harder to cut with because of their springy blades and thinner foibles. Cheers Chris Last edited by Chris Evans; 19th October 2006 at 10:16 AM. |
![]() |
![]() |
![]() |
#15 | |
Member
Join Date: May 2006
Location: Magenta, Northern Italy
Posts: 123
|
![]() Quote:
Obviously Samurai didn't find NihonTo so prone to bending. But yes, some modern JSA quotes that a bad cut can bend a bad sword. Bend doesn't mean to have a L shped blade, simply have a slightly out of shape blade, still recoverable and effecive in battlefield. |
|
![]() |
![]() |
![]() |
#16 |
Member
Join Date: Feb 2005
Posts: 133
|
![]()
HI all,
Will write more when I get back from class...but just a thought...part of crucible steel appeal was that the pattern in Near East islamic cultures is that it represented the "waters of paradise", immortality, afterlife martyrdom etc. What better blade to kill or be killed by? At later times (particularly when firearms were available) the appearance of the blade may have been more important, or just as important as the blades function. As for performance, one can not give a general statement that they were "good" or "bad" there are SO many variables...composition, phases, how good the blacksmith was etc. ![]() |
![]() |
![]() |
![]() |
|
|