![]() |
|
![]() |
#1 | |
Member
Join Date: Mar 2012
Posts: 422
|
![]() Quote:
|
|
![]() |
![]() |
![]() |
#2 |
Member
Join Date: May 2006
Posts: 7,043
|
![]()
The nature of meteoritic material means that it must be laminated if it is to be used in a blade, except where it has been cut directly from the body of the meteorite, and in this case that does not appear to be so.
|
![]() |
![]() |
![]() |
#3 |
Member
Join Date: Mar 2012
Posts: 422
|
![]()
There are plenty of examples of non-laminated meteoric iron blades, notably cold-forged blades. However, those are usually small. I don't know of any the size of Tutankhamun's dagger (21cm long blade).
Reading further I find: the other meteoric iron objects from Tutankhamun's grave are cold-forged. Apparently the dagger is the exception. The dagger blade is also possibly (probably?) not Egyptian in origin, but might be one of the iron blades given to Amenhotep III (Tutankhamun's grandfather (probably)), by King Tushratta of the Mittanni. |
![]() |
![]() |
![]() |
#4 | |||
Vikingsword Staff
Join Date: Dec 2004
Location: The Aussie Bush
Posts: 4,439
|
![]() Quote:
Quote:
Quote:
|
|||
![]() |
![]() |
![]() |
#5 |
Member
Join Date: May 2006
Posts: 7,043
|
![]()
Yep, heaps of examples of blades from meteoritic material that has not been forge welded.
However, as I said:- "---except where it has been cut directly from the body of the meteorite---" But to make a blade from the material without welding it, you need a very good, compacted piece of meteorite, and the blade size is dictated by the size of the meteorite. With forge welding the limitation is not the size of the meteorite, but the skill of the smith. Actually, you don't "cold forge" it, you use stock removal techniques. |
![]() |
![]() |
![]() |
#6 |
Member
Join Date: Mar 2012
Posts: 422
|
![]()
Many are cold-forged (i.e., hammered on an anvil, at ambient temperature). The most studied ones are from Greenland, from the Cape York meteorite. For some Greenland blades, the only stock removal is the sharpening of the edge, while for others, the whole surface has been ground (distortion of the original structure shows it has been forged). There are also cold-forged telluric iron blades from Greenland.
The advantage of cold-forging compared with stock removal with no forging is that less iron is lost. The size is limited by the size of the meteorite, but this is a limit to the volume, and the length and/or width of the final blade can exceed that of the meteorite. The largest blades I know of made this way are 50mm long, so only a quarter of the length of the blade of Tutankhamun's dagger. AFAIK, they are made from small fragments of the meteorite that fell separately, rather than pieces removed from the main pieces of the meteorite. The Greenland telluric iron blades are smaller, since they start with smaller pieces, but, again, this is a limit to the volume. Whether or not a meteorite can be usefully cold-forged depends on the meteorite. Some will shatter, some are too hard, and some are malleable and can be cold-forged. For discussion of cold-forging of the Greenland meteoric iron, including modern experiments, see Buchwald and Mosdal, "Meteoritic Iron, Telluric Iron and Wrought Iron in Greenland": https://books.google.com.au/books?id...=PA17&lpg=PA17 For the largest of the Greenland blades, see Buchwald, "Iron and Steel in Ancient Times": https://books.google.com.au/books?id...=PA22&lpg=PA22 |
![]() |
![]() |
![]() |
#7 |
Member
Join Date: Aug 2014
Location: Germany
Posts: 525
|
![]()
I have two additional pictures.
The picture with the red arrow clearly shows signs of a lamination process. The other picture looks like that the dagger is differential hardened. The blade is much too perfect for the first few footsteps with a completely new technology. Roland |
![]() |
![]() |
![]() |
#8 |
Member
Join Date: May 2006
Posts: 7,043
|
![]()
Please accept my apologies Timo.
I was wrong. My comments were based upon what I have seen made from meteoritic material by modern knifemakers, I wasn't even thinking of use in ancient times, I do know that it was used, but have not studied its use in ancient times. Still, based upon my own experience in working with meteoritic material, which is not inconsiderable, I do find it very difficult to believe it can successfully cold forged --- but I suppose it does depend upon the meteorite. Just a thought Timo:- are we talking about cold forging, or cold work? I've just a done quick scan of the material you have supplied links to, and although I have picked up "cold work", I have not yet seen "cold forge". Cold forging means that you work the material at a black heat, in other words you bring it to a red heat, let the material lose its heat until it is black, then you work it with a hammer until it is cold. This technique is sometimes used to pack the edge of a blade. "Cold work" means bringing the material to the shape required by cutting or grinding. |
![]() |
![]() |
![]() |
#9 | |||
Member
Join Date: Mar 2012
Posts: 422
|
![]()
Two questions:
Quote:
Laminated, in the sense of being welded together from different irons, is possible (and might explain why the 1995 XRF measurements gave a much lower nickel content - I should look where the recent XRF measurements were taken on the blade (it's in the supplementary material for the paper)). Quote:
I'd be really surprised if the carbon content is high enough for differential hardening. A lamination line would be a more likely explanation. Quote:
Perhaps not a completely new technology. The Alacahöyük dagger (from Anatolia) is about 1000 years older than Tutankhamun's dagger. Too corroded to know if the workmanship is similar. High nickel -> meteoric iron. https://commons.wikimedia.org/wiki/F...Alacahoyuk.jpg |
|||
![]() |
![]() |
![]() |
#10 | |
Vikingsword Staff
Join Date: Dec 2004
Location: The Aussie Bush
Posts: 4,439
|
![]() Quote:
|
|
![]() |
![]() |
![]() |
|
|