![]() |
|
![]() |
#1 | ||
Member
Join Date: Mar 2012
Posts: 422
|
![]() Quote:
The goal is to carburise the iron to produce steel, and done right it can make excellent steel. The diffusion of the carbon into the iron is the same as what happens when you make steel directly in a bloomery. You don't want it to melt, since you want high-carbon steel, not cast iron, so you get a bloom. I guess (but it's only a guess) that the bloom would be much cleaner than the bloom from a bloomery smelter, since if you just put in iron and charcoal, you should get a bloom full of slag. Steel made this way is called oroshigane by the Japanese, and it's still done for swordmaking. For those interested, video showing this kind of thing: https://www.youtube.com/watch?v=n5Zyf8svLKI I've heard of people doing similar things with forge scale, which is smelting (since it's an oxide). Quote:
[A pause, to go away and learn more.] OK, the deal with laterites is that "laterite" is a very broad category, and includes rocks that are iron ores and rocks that aren't iron ores. If they are iron ores, the iron is usually in the form of limonite. 70% of laterites contain limonite. Anatolian laterites have a Nickel:Iron ratio of about 1:30. If you made nickel-iron from them with 100% efficiency, you'd get about 3-4% nickel in the iron. Some laterites have more nickel than that, which is why (a) 8% (rather than 4%) is often considered a good rule of thumb to distinguish between ancient smelted nickel-iron and meteoric iron, and (b) people look at the nickel:cobalt ratio because that tends to be different for terrestrial vs meteoric (and Jambon has some nice graphs showing this (but his data doesn't include Anatolian ores)). |
||
![]() |
![]() |
![]() |
#2 |
Member
Join Date: May 2006
Posts: 6,994
|
![]()
This is very interesting technical information Timo, it is something that for the most part I do not know, in fact something I have not needed to know, my knowledge in this area deals with forge work, and I --- and I believe most other people involved with forge work --- tend to look at all the processes that produce the material with which we work, as "smelting". Obviously technically incorrect.
I had intended to stop posting to this thread, but your posts gave it a new life, well, at least for me they did. However we've still got King Tut's dagger sitting in front of us, and if we can now accept that it is indeed meteoritic material, which it must be if the nickel content is as high as it is reported to be, then we really only have one question:- prior to 1323BC who had the technology that could forge weld iron or could cast iron? welding depends on heat and pressure, but in the absence of a massive power hammer, the heat needed to weld iron is around 2500F - 2600F nickel will weld at a slightly lower temperature than iron casting depends upon having liquid metal, iron will melt at about 2800F Prior to 1323BC, when King Tutankhamen died, what people, anywhere in the world, had the technology that would provide temperatures in excess of 2500F? If that question can be answered we will know where the King Tut dagger came from, if it cannot be answered all we can do is to speculate. --- or maybe Erik von Daniken had the answer after all???? |
![]() |
![]() |
![]() |
#3 |
EAAF Staff
Join Date: Dec 2004
Location: Louisville, KY
Posts: 7,272
|
![]()
I am fascinated that this thread got this technical and went on so long. Great info, and it seems now that it has come full circle.
Thank you for sharing your knowledge. Alan, I especially thank you for your forging insights. In fact, I thank every one of you for your insights and thoughts. |
![]() |
![]() |
![]() |
#4 | |
Member
Join Date: Sep 2014
Location: Austria
Posts: 1,906
|
![]() Quote:
However, as long as all we have is very little factual evidence, any theory might be the valid one. In this context, maybe Roland's hypothesis may be closer to reality than we will ever know... ![]() Meanwhile... MERRY CHRISTMAS! ![]() |
|
![]() |
![]() |
![]() |
Thread Tools | Search this Thread |
Display Modes | |
|
|