![]() |
![]() |
#35 | ||
Member
Join Date: Mar 2012
Posts: 422
|
![]() Quote:
The goal is to carburise the iron to produce steel, and done right it can make excellent steel. The diffusion of the carbon into the iron is the same as what happens when you make steel directly in a bloomery. You don't want it to melt, since you want high-carbon steel, not cast iron, so you get a bloom. I guess (but it's only a guess) that the bloom would be much cleaner than the bloom from a bloomery smelter, since if you just put in iron and charcoal, you should get a bloom full of slag. Steel made this way is called oroshigane by the Japanese, and it's still done for swordmaking. For those interested, video showing this kind of thing: https://www.youtube.com/watch?v=n5Zyf8svLKI I've heard of people doing similar things with forge scale, which is smelting (since it's an oxide). Quote:
[A pause, to go away and learn more.] OK, the deal with laterites is that "laterite" is a very broad category, and includes rocks that are iron ores and rocks that aren't iron ores. If they are iron ores, the iron is usually in the form of limonite. 70% of laterites contain limonite. Anatolian laterites have a Nickel:Iron ratio of about 1:30. If you made nickel-iron from them with 100% efficiency, you'd get about 3-4% nickel in the iron. Some laterites have more nickel than that, which is why (a) 8% (rather than 4%) is often considered a good rule of thumb to distinguish between ancient smelted nickel-iron and meteoric iron, and (b) people look at the nickel:cobalt ratio because that tends to be different for terrestrial vs meteoric (and Jambon has some nice graphs showing this (but his data doesn't include Anatolian ores)). |
||
![]() |
![]() |
|
|